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Abstract
The atomic structure of cristobalite in both its high-temperature β-phase and
low-temperature α-phase has been studied using constrained reverse Monte
Carlo modelling of neutron total scattering data. The modelling has shown
that the disorder of the β-phase involves rotations and displacements of rigid
SiO4 tetrahedra, consistent with the predictions of the ‘rigid-unit mode’ (RUM)
model. The structure of the α-phase is significantly different from that of
the β-phase, but still has a degree of disorder. The calculated distribution
of oxygen atoms in β-cristobalite is continuous rather than based on specific
crystallographic sites. There is no evidence for correlations between the Si–O
distance and the corresponding Si–O–Si bond angles, contrary to quantum
mechanical calculation findings. The three-dimensional diffuse scattering has
been calculated from the model configurations, and is found to be in agreement
with experimental electron diffraction measurements and the predictions of the
RUM model. There is little significant temperature dependence of the structure
or diffuse scattering in the β-phase.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

Silica, SiO2, is one of the most important materials for a variety of reasons. It is important
for geology as a component of the Earth, its glass phase is important as a ceramic, and its
quartz phase is one of the most important piezoelectric materials. Moreover, the displacive
phase transitions in the crystalline polymorphs are excellent prototype systems for general
solid-state physics and chemistry investigations [1].
3 Author to whom any correspondence should be addressed.
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The cristobalite polymorph of silica has received a lot of attention over many years [2–11],
in part because a number of other materials have structures based on that of cristobalite.
There is a first-order phase transition at around 590 K between the high-temperature β-phase
of cubic symmetry (space group Fd3m) and the low-temperature α-phase of tetragonal
symmetry (space group P41212). There is a significant change in volume at the phase
transition [6].

The structure of β-cristobalite has presented significant challenges to our understanding
of the balance between short-range and long-range order. The structure defined by the average
positions of the atoms is most easily described as derived from that of elemental silicon (fcc,
with Si fractional coordinates ±(1/8, 1/8, 1/8)), with an oxygen position half-way along each
nearest-neighbour Si–Si vector. This is shown in figure 1(a). The problem with this structure is
that it has straight Si–O–Si bonds, and it is known that in almost all silicate materials this bond
has an angle between 145 and 150◦. Related to this is the problem that the distance between
the mean Si and O positions (1.55 Å [10]) is substantially lower than the usual Si–O bond
length (1.61 Å). Moreover, the displacement parameters from crystal structure refinements
(shown in figure 1(a) and discussed later) have the distribution of oxygen atoms spread out
normal to the Si–Si vector [6], and the structure can be reconciled with a model with disordered
orientations of the Si–O bonds to give an Si–O–Si angle close to 145◦ and an Si–O bond length
close to typical values [9]. There have been attempts to refine the crystal structure assuming
disordered positions for the oxygen atoms distributed on an annulus around the mean oxygen
position. The most common approach is to assign six positions for each oxygen atom in a ring
around its average position, each with 1/6 occupancy [6], as shown in figure 1(b). Although
this model is more realistic than the ideal model with the oxygen actually located at its mean
position—for example, as we demonstrate below, it gives more realistic Si–O bond distances,
and it gives good agreement with experimental data in the crystal structure refinements—it

a) b)
Figure 1. (a) The crystal structure of β-cristobalite refined using a single-site model for the oxygen
atoms. (b) The crystal structure of β-cristobalite refined using the six-site model for the oxygen
atoms. Both structures have the thermal displacement parameters represented by ellipsoids. In
the single-site model, the thermal displacement ellipsoids of the oxygen atoms are elongated in
the directions normal to the nearest-neighbour Si–Si vectors. In the six-site model, the thermal
displacement ellipsoids of the oxygen atoms in a small ring overlap.
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is quite possible that this model is still an oversimplification of the actual crystal structure
of β-cristobalite. Moreover, as we will discuss in more detail below, the spatial resolution
given by conventional diffraction measurements is coarser than the distances between the split
sites (around 0.5 Å), which means that conventional diffraction techniques are not able to
unambiguously discriminate between models of the disorder of the SiO4 tetrahedra, simply
because it is not possible with conventional diffraction to provide information about the spatial
distribution of atoms to a sufficiently fine resolution.

The main question that is posed by the structure of β-cristobalite is how this disorder
can be sustained. It has to be remembered that any Si–O bond is part of a SiO4 tetrahedral
unit, and these are not readily deformed by any significant amount. The tetrahedra are all
linked into an infinite network through sharing of vertices. Thus the orientation of an Si–O
bond is correlated with the rotation of the whole SiO4 tetrahedron, and the rotation of one
tetrahedron is correlated with the rotations of the tetrahedra linked to it. Thus the network
may, at least in principle, be highly constrained, and the motions of the SiO4 tetrahedra are
controlled by the flexibility of the network. One popular explanation as to how the network
would sustain orientational disorder of the Si–O bonds is to assume that the cubic structure is
only an average over small domains of a lower-symmetry structure, one that has bent Si–O–Si
bonds and Si–O bonds that have usual lengths. One obvious candidate structure is that of
the tetragonal α-phase, space group P41212 [5]. There are 12 orientations of a domain of
this phase, and by having all domains present the cubic structure is an average of all domain
orientations. An older model [12] has a different structure for the domains, with space group
I42d. The general domain model is now known to be too simple, but it gives an idea of what
it possible.

The alternative approach to understanding the nature of the structure of β-cristobalite
is through the ‘rigid-unit mode’ model [13–16]. The important point in this model is that
a structure made of a framework of linked polyhedra can have phonon modes in which the
polyhedra move without distorting. The most familiar example of such a phonon, which we
call a ‘rigid-unit mode’ (RUM), is the octahedral tilting soft mode in cubic perovskites such
as SrTiO3. An algorithm has been developed to facilitate the calculation of the RUMs for a
given crystal structure at any given wave vector k, using a technique called the ‘split-atom
method’ together with the formalism of molecular lattice dynamics [13, 17]. Calculations
for β-cristobalite have shown that there is one RUM for every wave vector of the form
k = {ξ, ξ, ζ }∗, which lie in the 〈1, 1, 0〉 zones of reciprocal space [7,8,13,14]. The distortion
to give the crystal structure of α-cristobalite involves a RUM at k = (1, 0, 0), which is doubly
degenerate because this wave vector sits at the intersection of two planes of RUMs. Moreover,
the alternative domain proposed for the I42d modification of β-cristobalite is obtained by a
distortion involving the triply degenerate RUM at k = 0, where there is an intersection of
three planes of RUMs. Therefore both types of domain can exist as phonon fluctuations of
β-cristobalite, but so also can all the distortions associated with the other RUMs in the 〈1, 1, 0〉
zones in reciprocal space. The upshot of this thinking is that the dynamic superposition of
all RUMs can create a dynamically disordered structure. This point has been documented in
some detail [8, 14].

The key to understanding local structure is through measurements of total scattering,
S(Q) [18–21]. In this approach, measurements are made of the total scattering of neutrons or
x-rays, integrated over all energies, as a function of scattering vector Q. The total scattering
signal contains both the Bragg elastic scattering, which gives the average structure, and the
diffuse scattering. As we will discuss formally below, the Fourier transform of the total
scattering signal gives the pair distribution functions, which contain information about the
structure on a short length scale. This gives the ability to determine short-range fluctuations of
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the crystal structure. Neutron total scattering measurements performed at a spallation source,
which produces a rich spectrum of high-energy neutrons, can yield S(Q) data up to large
values of Q. For example, the data used in this paper were obtained for values of Q up to
Qmax = 50 Å−1, which gives a spatial resolution of�r = 2π/Qmax = 0.13 Å. By comparison,
the best spatial resolution that could be obtained using Cu Kα x-radiation would be 0.77 Å.
Although atomic coordinates, and hence distances between mean positions, can be determined
with a much greater precision in crystal structure refinement from conventional diffraction
data, these are still subject to the constraints of the resolution. What is actually being refined is
the mean position of a peak in the model atomic density function. In a well-ordered structure,
the resolution does not cause a problem: the atoms are separated by distances greater than the
intrinsic resolution, and it is still possible to determine the peak position with higher precision
that the resolution. However, in disordered crystals where peaks in the density function are
closer together than the intrinsic resolution, the detailed shape of the density function may be
difficult to determine unambiguously, and hence different models may give fits to the data with
more-or-less equal quality.

Previously we reported measurements ofS(Q) for cristobalite at several temperatures [10].
Analysis of the pair distribution functions gave a number of important results. First, we showed
that the actual Si–O bond length obtained from the pair distribution functions is longer than the
distance between the mean positions in the idealized structure, and similar in value to that in
other silicates. This result was combined with the O–O and Si–Si distances from the first two
peaks in the pair distribution functions to show that there are rigid-unit rotations of the SiO4

tetrahedra such that the Si–O–Si angle is bent towards 145–150◦ rather than the linear bond
suggested by the ideal structure. The second important result was that the pair distribution
functions for the β- and α-phases of cristobalite differ for distances greater than 5 Å, which
implies that the structures of the two phases are only the same over the distance scale of a
single SiO4 tetrahedron. This result suggested that the model of the structure of β-cristobalite
being composed of domains of α-cristobalite is not appropriate.

In this paper we present a new analysis of these earlier neutron S(Q) data, using a new
form of the ‘reverse Monte Carlo’ (RMC) method [22–27]. The idea is that the atoms in a
configuration are moved by a Monte Carlo method to give a final configuration that reproduces
the experimental data. In the simplest implementation, the only data are for S(Q) or the pair
distribution function. This approach was modified to allow for the use of constraints [24, 25].
The important constraints for studies of silica are on the Si–O bond length and the O–Si–O
angle. The latter constraint ensures the integrity of the SiO4 tetrahedra, and the former
constraint is set by the distances given by the pair distribution functions. More recently
we have added a new constraint by including the intensities of the Bragg peaks as a distinct set
of data [26,27]. There are two important effects of this. One is that the Bragg intensities give
a constraint on the long-range order of the RMC configuration (at least within the length scale
of the RMC simulation). This constraint balances the short-range order that the RMC gives
through the constraints from the pair distribution function, and this allows the RMC analysis
to give simultaneous information about both the long-range and short-range order. The second
effect is that the Bragg peaks give information about the three-dimensional structure through
their dependence on (h, k, �).

From the RMC configurations it is possible to calculate any distribution function. Our
main objective is to use the RMC method to examine the structures of the two phases of
cristobalite through calculations of appropriate distribution functions. In this study we will
search for any evidence that the domain model may be in any way appropriate, and we will
investigate other structural models of the disorder. We will also investigate any temperature
dependence in the β-phase, and compare the degree of disorder in the two phases.
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2. Methods and analysis

2.1. Experimental methods

The measurements of the neutron total scattering function S(Q) were performed on powdered
samples of cristobalite using the LAD diffractometer (now decommissioned) at the ISIS pulsed
spallation neutron source [28]. LAD was a time-of-flight diffractometer, with measurements
carried out using banks of detectors covering a wide range of scattering angles in order to give
a wide coverage of the scattering vector Q.

The sample of cristobalite used in the experiment was obtained by annealing silica glass
at 1600 ◦C for six days (note that there is a typographical error on this detail in [10]). The
sample volume was about 3 cm3. Other details of the measurements are given in our earlier
paper [10]. These include details of the standard procedures [18, 19, 30] that we followed to
correct the data for the effects of background scattering, scattering from the vanadium sample
can, and absorption and attenuation of the neutron beam, and to normalize the data in order to
produce an absolute measurements of S(Q) for values of Q between 0.5 and 50 Å−1. Data
were collected for five temperatures, one (475 K) in the α-phase and four (575, 700, 825,
950 K) in the β-phase.

2.2. Total scattering correlation functions

The scattering function can be written in the following form [29]:

S(Q) = 1

N

dσ

d�
= F(Q) +

N∑
i=1

cib
2
i (1)

where 4π
∑

i cib
2
i is the total scattering cross section of the material, and the summation is

over the n atom types. There are N atoms in the material, and ci gives the proportion of atom
type i. bi is the coherent scattering length of atom type i. F(Q) is related to the total radial
distribution function G(r) by the Fourier transform

F(Q) = ρo

∫ ∞

0
4πr2G(r)

sinQr

Qr
dr (2)

where G(r) is defined as

G(r) =
∑
i,j

cicj bibj
[
gij (r) − 1

]
(3)

and 4πr2ρjgij (r) dr is the number of atoms of type j lying within a spherical shell of inner
and outer radii r and r + dr surrounding an atom of type i. ρj is the number of atoms of type
j per unit volume, and is equal to cjρ0, where ρ0 is the overall number density. By definition,
G(r) → 0 as r → ∞.

G(r) is obtained from experimental data through the inverse transform

G(r) = 1

(2π)3ρ0

∫ ∞

0
4πQ2F(Q)

sinQr

Qr
dQ. (4)

Combining this with equation (2), we see that the quantities related by the transforms are
QF(Q) and rG(r). For this reason, it is appropriate to present the pair distribution functions
in terms of the function

D(r) = 4πρ0rG(r). (5)
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In the same spirit, we can define corresponding functions for individual atom pairs:

dij (r) = r
[
gij (r) − 1

]
. (6)

From equation (4), G(r) is equal to −(
∑

i cibi)
2 in the limit r → 0, which means that

D(r) has a negative linear form at small r . For this reason, it is common to use the function

T (r) = D(r) + 4πρ0r

(∑
i

cibi

)2

(7)

to describe the pair correlations at small distances. The advantage is that when the peaks
in T (r) do not overlap, they lie on a background term of zero value (aside from any noise),
whereas the low-r peaks in D(r) lie on a negative sloping background [18, 19].

2.3. Preliminary data analysis

The F(Q) data were converted to G(r) using an inverse Monte Carlo method [35]. This
has the main advantage of reducing the termination ripples that arise from a standard Fourier
transform. In figure 2 we show the QF(Q) data for cristobalite at all of the temperatures of
the measurements, and in figure 3 we show the corresponding transforms to T (r)/4πρ0. The
peaks in T (r) correspond to specific interatomic distances, and in figure 3 we mark the peaks
corresponding to the Si–O and O–O bonds within the SiO4 tetrahedra.

0

1

2

3

0 10 20 30 40 50

Q (Å–1)

Q F(Q)

475 K (α)

575 K (β)

700 K (β)

825 K (β)

950 K (β)

Figure 2. Measurements of QF(Q) for cristobalite at five temperatures, with the data from
successive temperatures shifted by a vertical offset for clarity. The large scatter of the data at high
values of Q arises because of the factor of Q. The sharp peaks at the lower values of Q are the
Bragg peaks.

In addition to converting the data to F(Q), we also converted the data into a form suitable
for Rietveld analysis and for extraction of the intensities of Bragg peaks. Both procedures
were performed using the CCSL code developed at ISIS [31,32]. The intensities of the Bragg
peaks, which are required for the RMC modelling, were extracted from the diffraction data
using the Pawley method [33]. The Rietveld analysis gave accurate lattice parameters needed
for the RMC modelling.
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Si–O
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4πρ0

Figure 3. Functions T (r)/4πρ0 for cristobalite at five temperatures, obtained by Fourier trans-
formation of the data shown in figure 2. The two peaks at the lowest distances r correspond to the
Si–O and O–O bonds. Data from successive temperatures have been shifted by a vertical offset for
clarity.

2.4. Rietveld analysis

The Rietveld refinements were performed using two models for the structure of the β-phase.
The first was the idealized model with O atoms on position (0, 0, 0) and Si atoms on position
(1/8, 1/8, 1/8) (the setting of the space group Fd3m has the centre of symmetry on the
origin), and the second was a six-site model for the oxygen atoms, with positions (0, y, y).
In the refinements of both models, and for the α-phase, anisotropic temperature factors were
refined along with the lattice parameters, atomic coordinates, and background. In table 1
we give the main results from these refinements, which compare well with earlier Rietveld
refinements from neutron powder diffraction data [6]. The fitted diffraction patterns for the
two phases of cristobalite are shown in figure 4.

The refined structures of the two models for β-cristobalite are shown with thermal
ellipsoids in figure 1. The interesting point seen in figure 1 is that in the six-site model
the thermal displacement ellipsoids of the oxygen atoms in the small rings overlap, giving the
possibility of a continuous distribution of oxygen atoms around an annulus rather than a strict
localization over six specific sites.

In table 1 we show the distances between the refined positions of neighbouring Si and
O atoms (often taken to approximate the Si–O bond lengths) given by the coordinates of the
six-site model, and compare these with the actual Si–O bond lengths obtained from the T (r)

data. By contrast, the distances between the Si and O positions in the ideal model are equal
to

√
3a/8, and are significantly shorter than the Si–O distances from T (r) and those from the

six-site model. It can be seen that the Si–O distances from the six-site model are close to the
Si–O bond lengths from the T (r) data (figure 3), but are slightly shorter and appear to get
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Table 1. Summary of results of the Rietveld refinements of the structure of β-cristobalite using the
six-site model, and of α-cristobalite. Standard deviations on the last digits are given in brackets.

β

T (K) a (Å) O(y) Si–ORietveld Si–OT (r)

575 7.13101(2) 0.0450(4) 1.609(3) 1.611(2)
700 7.13681(2) 0.0443(4) 1.608(3) 1.612(1)
825 7.14062(2) 0.0418(8) 1.603(6) 1.613(1)
950 7.14353(2) 0.0418(1) 1.604(1) 1.615(2)

α

a (Å) c (Å) Si(x) O(x) O(y) O(z)

4.98645(2) 6.96765(4) 0.2958(1) 0.2403(2) 0.0963(1) 0.17436(8)

α-cristobalite
T = 475 K

d-spacing (Å)

β-cristobalite
T = 950 K

0.5 1.0 1.5 2.0 2.5 3.0

In
te

n
si

ty

Figure 4. Two examples of the Rietveld fitting to the diffraction data. The vertical bars along
the top of each plot represent the d-spacings of the Bragg peaks. The bottom curve in each case
represents the difference between the calculated and experimental diffraction patterns scaled by
the standard deviation of each point.

even shorter on heating (the apparent coefficient of thermal expansion is −1.0 × 10−5 K−1).
This behaviour is a consequence of the fact that the distances between mean positions do not
account for correlated fluctuations such as fluctuations in the orientations of the Si–O bond.
The normal thermal expansion of the Si–O bond as obtained from S(Q) data (coefficient
(2.2 ± 0.4) × 10−6 K−1) has been discussed previously [34].
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2.5. Reverse Monte Carlo modelling

The reverse Monte Carlo (RMC) method [22, 23] as used in this work has been described
in detail in previous publications [24, 25]. The idea is to use a Monte Carlo procedure to
modify the positions of the atoms in an ensemble. Random changes of the atomic positions
are proposed, and are moved subject to the usual rules of the Monte Carlo method as regards
changes in the energy function, which is defined as

χ2 =
∑
j

∣∣Fcalc(Qi) − Fexp(Qi)
∣∣2
/σ 2

F (Qj ) +
∑
j

∣∣Gcalc(ri) − Gexp(ri)
∣∣2
/σ 2

G(rj )

+
∑
Si–O

|rSi–O − RSi–O|2/σ 2
Si–O +

∑
O–Si–O

|θO–Si–O − ,O–Si–O|2/σ 2
O–Si–O

+

∣∣∣∣∣
∑
hk�

|F(hk�)|2calc − s|F(hk�)|2exp

∣∣∣∣∣
2 /

σ 2
hk�. (8)

The first two terms are the conventional terms in an RMC simulation. In principle these two
functions contain the same information, but using the two functions simultaneously picks out
different features of the data. The G(r) functions are calculated directly in the simulation,
and the F(Q) functions are obtained by Fourier transform. However, if the shortest edge of
the simulation sample has length L, G(r) can only be defined up to distance L/2. Thus the
calculated F(Q) will contain truncation ripples. In order to make a valid comparison with the
experimental data, the experimental F(Q) are convoluted with the sinc function:

F conv
exp (Q) = 1

π

∫ +∞

−∞
Fexp(Q

′)
sin((Q − Q′)L/2)

Q − Q′ dQ′. (9)

The weighting parameters σ in equation (8) are allowed to vary from point to point, but in
practice constant values are used for all points in both functions.

The third and fourth terms ensure that the SiO4 tetrahedra retain their size, shape, and
integrity, and also ensure that the initial network of SiO4 tetrahedra is maintained in the RMC
simulation. The Si–O distance rSi–O is allowed to vary around the set value RSi–O, which is
chosen to be the position of the peak in T (r) corresponding to the Si–O bond length. The
O–Si–O angle θO–Si–O is also allowed to vary around the set point ,O–Si–O = 109.47◦.

The last term in the RMC energy function is a new addition in our recent work. The
functions F(hk�) are the crystallographic structure factors of the Bragg peaks, defined at
Qhk� = ha∗ + kb∗ + �c∗:

F(hk�) = 1

2πN

∑
j

bj exp(iQhk� · rj ). (10)

s is a scale factor, which is obtained by minimization of χ2:

s =
(∑

hk�

|F(hk�)|2calc|F(hk�)|2exp/σ
2
hk�

)/(∑
hk�

|F(hk�)|4calc/σ
2
hk�

)
. (11)

Although the Bragg peaks are included in the total scattering data, and therefore have an impact
in the first two terms of χ2, their effects in these terms are reduced. As far as the F(Q) data
are concerned, since the experimental data are broadened by the convolution with the sinc
function, the information about the long-range order is reduced. Moreover, in the analysis
of G(r) no explicit account is taken of the specific hk� indices assigned to the Bragg peaks.
As far as the G(r) data are concerned, the information about mean atomic positions gets lost
beyond the distance at which there is a large overlap of atomic separations.
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As we mentioned above, there are two main purposes of the new term containing the Bragg
peak intensities. The first is to ensure that the configuration produced by the RMC simulation
is consistent with the long-range order of the experimental system. Since the RMC method
is essentially a statistical mechanics method, it will automatically maximize the entropy to
produce configurations that are as disordered as possible whilst remaining consistent with
the experimental data. The Bragg intensities provide information about the long-range order,
and act as an effective constraint on the extent of the disorder that can be generated in the
RMC simulation. The second purpose of the use of the Bragg intensities is to provide some
degree of the three-dimensional structure. Although the diffraction data are one dimensional,
the extracted Bragg peaks are identified with the three-dimensional vectors Qhk�, providing
information about the three-dimensional aspects of the structure as in single-crystal diffraction.
In practice the use of the Bragg peaks may or may not have a significant effect on the RMC
configurations, but they will certainly increase the confidence in the reliability of the RMC
configurations.

As has been noted before [25], because we are refining an initial structure and incor-
porating constraints that prohibit major changes from the initial structure, our use of the RMC
method is more in the line of a tool for refining a model than the usual use of constructing
a model.

The RMC configurations used in our work contained 24 000 or 12 000 atoms for the cubic
or tetragonal structures respectively, with initial configurations in either the tetragonal or cubic
structures. In both cases the simulation sample corresponded to a 10×10×10 supercell of the
conventional unit cells. The lattice parameters were those given by the Rietveld refinements.
In the first stage of the RMC analysis, the energy function only contained the two terms that
act as constraints on the Si–O distance and O–Si–O angle. The point of this is to allow the
structure to evolve to give the correct bond lengths as the first stage in the model refinement.
The F(Q), G(r) and Bragg peak data were then included in the RMC refinement.

3. Results from the RMC analysis

3.1. Atomic configurations

The structure plot shown in figure 1 gives the impression of a continuous distribution of oxygen
positions, with tetrahedra tilted by large angles (15–20◦) from the orientations of the average
positions. How this is realized can be seen in pictures of configurations of the atoms. (111)
layers of the configurations of β-cristobalite obtained in the RMC simulations are shown in
figure 5, together with a corresponding layer ((201)) from the RMC simulation ofα-cristobalite.
In the ideal structure of β-cristobalite, the rings of SiO4 tetrahedra would be perfect hexagons.
The large distortions of the rings due to rigid-body rotations and displacements of the tetrahedra
can be seen at each of the four temperatures of the β-phase. The RMC configurations of
β-cristobalite show no obvious signs of the existence of any domains of whatever structure—
the distortions of the hexagonal rings show no spatial correlations. More quantitative analysis
in support of this point will be given below, but one might expect that if any domain structure
were present it ought to be possible to detect it from visual inspection of the configurations. It
is quite possible that there are structural correlations involving fluctuations with wave vectors
spread across reciprocal space. This is the interpretation of the RUM model (discussed below),
and we will show the reciprocal-space analysis later.

The RMC configuration for α-cristobalite shown in figure 5 shows the change in order
associated with the phase transition. The figure shows the ideal structure obtained from
Rietveld refinement (average structure, with no thermal motion represented). Although the
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575 K (β) 700 K (β)

825 K (β)

475 K (α)

900 K (β)

Idealised α

Figure 5. Atomic configurations of cristobalite at the five temperatures obtained from the
RMC refinement, with the atoms represented as shaded SiO4 tetrahedra. The views are down
the [111] axes of the cubic β-phase, and down the corresponding [201] axis of the tetragonal phase.
The figure also shows the corresponding projection of the ideal tetragonal phase with no thermal
motion.

order in the structure is clear to see, it is also clear that there is still a significant amount of
orientational disorder.

In the following sections we provide a number of quantitative evaluations of the
structural disorder.
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3.2. Pair distribution functions

Earlier we drew attention to the T (r) data shown in Figure 3. We noted in our previous
publication [10] that the T (r) functions for all temperatures in the β-phase are very similar,
but there are differences in the T (r) functions between the α- and β-phases for distances
beyond 5 Å. These differences are highlighted in calculations of the individual pair distribution
functions dij (r) from the RMC configurations shown in figure 6.
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Figure 6. Calculated dij (r) functions for cristobalite at the five temperatures, obtained from the
RMC refinement. The data for each temperature are shifted by a vertical offset for clarity.
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We note from the outset that the Si–Si pair distribution function has little effect on the
overall T (r). This is due to the weaker scattering lengths of the Si atoms and the small
proportion of Si atoms. The strongest peak in dSi–Si(r) is the nearest-neighbour peak at ∼3.1 Å,
which shows as an extremely weak feature in the T (r) data of figure 3. Thus the peaks in the
T (r) data of β-cristobalite at ∼5 Å can be identified with peaks in dO–O(r), and the peaks in the
T (r) data of β-cristobalite at ∼4, ∼6.5, and ∼10 Å can be identified with peaks in dSi–O(r),
and the peaks in the T (r) data at ∼9 Å can be identified with peaks in both dO–O(r) and
dSi–O(r). The most significant changes in the individual pair distribution functions between
α-cristobalite and β-cristobalite over the range 5–10 Å occur in dO–O(r), and these changes
almost account for all of the differences between the T (r) functions shown in figure 3 and
discussed in some detail in [10]. There are slight changes in dSi–Si(r), due to the changes in
the lattice parameters and small symmetry-breaking displacements of the SiO4 tetrahedra, and
in dSi–O(r). It is not at all surprising that the most significant changes between the two phases
are in dO–O(r), because the displacive phase transition is primarily associated with changes in
the orientations of the SiO4 tetrahedra, with only small symmetry-breaking displacements of
the Si cations.

3.3. Bond-angle distribution functions

Figure 7 shows the distribution functions for the O–Si–O, Si–O–Si and Si–Si–Si bond angles,
plotted as functions of cos θ , where θ represents the particular bond angle. The O–Si–O
angle distribution function (ADF) is expected to have a peak around the tetrahedral angle
cos−1(−1/3) = 109.47◦, which is indeed found to be the case. The breadth of this peak
reflects the extent to which the tetrahedra are distorted. It is striking that this distribution
is somewhat broader in the β-phase than in the α-phase—more than can be accounted for
by simple thermal motion (the pure effects of thermal motion can be seen by comparing the
ADFs for the four temperatures of the β-phase). It is clear that the large-amplitude rotations
of the SiO4 tetrahedra that characterize the disorder in the β-phase are accompanied by small
distortions of the angles within the SiO4 tetrahedra. Our earlier analysis of theT (r) data [10,34]
showed that there are no corresponding changes in the Si–O bond lengths.

The Si–O–Si ADF for β-cristobalite is a broad single peak centred on cos θ = −1, but for
α-cristobalite the ADF has a maximum at cos θ = −0.85, which corresponds to a most prob-
able Si–O–Si angle of 148◦. This difference is actually a little misleading. The corresponding
distribution function in terms of the bond angle, P(θ), is related to the distribution function in
terms of cos θ by P(θ) = P(cos θ) sin θ . This means that the peak in P(cos θ) at cos θ = −1
actually corresponds to a value of zero in P(θ). Thus the Si–O–Si ADF for β-cristobalite
is showing a broad peak at slightly larger angles as compared to that in α-cristobalite. This
comparison will also be seen in the discussion of figure 10 below.

The Si–Si–Si ADF is a broad single-peaked function centred on cos−1(−1/3) (most
probable angle of 109.47◦) for β-cristobalite at all temperatures. This is consistent with
the average structure, as it is based on the diamond structure with respect to the positions
of the Si atoms. However, for α-cristobalite the ADF has three peaks, the strongest being
centred on cos−1(−1/3) and being sharper than for β-cristobalite, with two new outside
peaks at cos θ ∼ −0.58 and cos θ ∼ −0.05 which extend beyond the range of the ADF
of β-cristobalite. The centres of these two peaks correspond to the angles θ = 126◦ and
θ = 93◦ respectively, which are the values of some of the Si–Si–Si angles in the average
crystal structure of α-cristobalite.

The significant differences in the Si–O–Si and Si–Si–Si ADFs between the two phases
show that the short-range structures of the two phases are quite different, consistent with the
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Figure 7. Three bond-angle distribution functions for cristobalite at the five temperatures. In each
case, the distribution functions for all temperatures in the β-phase are very similar, but significantly
different from the distribution functions of the α-phase. The data are given as functions of cos θ ,
where θ is the particular bond angle in each case.
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qualitative impressions given by the configurations in figure 5. In particular, the absence of the
Si–Si–Si angles at θ = 126◦ and θ = 93◦ in β-cristobalite shows that any local fluctuations
of the structure of β-cristobalite into domains of the structure of α-cristobalite must have low
probability.

One important point from the bond angle distribution functions is that although their
widths have some temperature dependence in the β-phase, the changes with temperature are
substantially smaller than the changes between the α- and β-phases. This clearly shows that
there are significant differences between the short-range structures of the two phases, and
that the dynamical disorder in the β-phase is more than simple thermal motion. Instead, the
orientational disorder that gives rise to the changes in the ADFs is intrinsic to the structure of
β-cristobalite.

3.4. Bond correlations

We now search for correlations between different bond angles and between bond angles and
distances. The bond angles for this analysis are defined in figure 8. θ is the Si–O–Si angle, and
φ is the angle between the Si–O–Si plane and any of the O–Si–O planes. In effect, φ gives the
direction of the tilt of the Si–O–Si bond. r is defined as the length of either of the Si–O bonds in
a Si–O–Si linkage. Figure 9 shows two-dimensional maps of the distributions of θ and r , and
figure 10 shows the maps of the distributions of θ and φ. The θ–r maps show a spread of values
of the Si–O–Si angles in accord with the results of the previous discussion (figure 7), together
with a spread in values of the Si–O bond length. The shape of the coupled distribution shows no
obvious correlation between the two quantities—such a correlation should be indicated if the
distribution was in the shape of an ellipse with axes that are not parallel to the axes of the plot.
The lack of correlation should be contrasted with the findings from the quantum mechanical

φ

θ
r

Figure 8. Definitions of the angles associated with the relative orientations of two linked SiO4
tetrahedra. θ is the Si–O–Si bond angle. φ is the angle between the direction of the tilt of the
bridging Si–O bond of one tetrahedron projected onto the plane of the three basal oxygen atoms
of the other tetrahedron: the value φ = 0 corresponds to the bridging Si–O bond tilting in the
direction of one of the basal oxygen atoms.
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Figure 9. Maps of the distributions of θ (defined in figure 8) and the lengths of either of the two
Si–O bonds, r . The higher values of the distributions are indicated by the lighter shading of the
map.

calculations of Lasaga and Gibbs [36]. These suggested that an increase of the Si–O–Si angle
should be accompanied by a shortening of the Si–O bonds. It is clear that, at least as far as
fluctuations in the structure are concerned, there are no clear correlations of this sort.
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Figure 10. Maps of the distributions of the θ - and φ-angles defined in figure 8. The higher values
of the distributions are indicated by the lighter shading of the map.

The θ–φ plots, figure 10, show that there is a wide distribution of the values of φ. This
implies that there are no special orientations of the Si–O bond, but that all orientations are
likely. Looking back at the plots of the structure of β-cristobalite in figure 1, it is clear that the
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six-site model gives probability distribution functions for the positions of the oxygen atoms
that overlap, and this overlap is consistent with the continuous distribution in the φ-angles
seen in figure 10. There is also a broad distribution of the φ-angles for α-cristobalite, with
some weak structure to the distribution. The average structure has several values of φ, and
the structural disorder seen in figure 5 simply smears the distributions into broad continuous
distributions.

3.5. Calculations of diffuse scattering

It is possible to calculate the three-dimensional diffuse scattering from the atomic config-
urations generated by the RMC modelling. Specifically, we calculate

S(Q) =
∑
i,j

bibj 〈exp(iQ · [ri − rj ])〉 (12)

where ri is the instantaneous position of the atom with label i, and as before bi is the cor-
responding scattering length. Note that we have a grid of values of Q as given by the size of
the RMC simulation sample.

Analysis of a single configuration gives relatively noisy results. Therefore in our calc-
ulations of S(Q) we averaged over symmetry in order to reduce the statistical noise, and used
a Gaussian smoothing over neighbouring grid points. The results for the five temperatures are
shown in figure 11. The diffuse scattering maps for all temperatures in theβ-phase show similar
features of lines along 〈1, 0, 0〉∗ and 〈1, 1, 0〉∗. These features reproduce the experimental
measurements of diffuse scattering by transmission electron microscopy (TEM), which are also
shown in figure 11 [2, 3]. These lines correspond exactly to the RUM calculations [7, 13, 14].
In α-cristobalite, the modes that give the strong diffuse scattering in the cubic phase are no
longer RUMs [7, 14]. However, they will still be at reasonably low frequency just below the
transition temperature and will therefore give weak ‘shadows’ of the diffuse scattering of the
cubic phase. This is what is seen in the plots in figure 11.

There are two implications of these results. The first is that the RMC models have
correctly reproduced the real three-dimensional structure and three-dimensional fluctuations.
It is perhaps remarkable that it has been possible to accurately construct the three-dimensional
diffuse scattering from the one-dimensional powder diffraction data! On the other hand, it
is also likely to be true that if the RMC models, including the data-based constraints, have
captured the correct physics, they may not have the freedom to do other than reproduce the
correct RUM fluctuations that give the experimental diffuse scattering. Thus follows the second
implication of these results, namely that the configurations produced by RMC modelling are
consistent with the ability of the RUMs to generate disorder.

4. Discussion

From the RMC analysis of the neutron total scattering data from cristobalite presented in
this paper we can draw a number of conclusions. The most straightforward is that we have
further evidence that the structure of β-cristobalite cannot be described in terms of a limited
number of domains of an ordered structure. The atomic configurations generated by the RMC
analysis, together with the distributions functions and three-dimensional diffuse scattering
patterns calculated from these configurations, lend a lot of support to the RUM interpretation
of the origin of the structural disorder. The RMC analysis has given more details of the nature
of the structural disorder, in particular showing that there are no preferred sites for the oxygen
atoms but that instead each oxygen atoms lies on an continuous annulus of possible positions.
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Figure 11. Maps of the three-dimensional diffuse scattering from cristobalite, showing the a∗–b∗
plane in reciprocal space. The plot forα-cristobalite is indexed asβ-cristobalite in order to highlight
the common aspects. The single-pixel white spots are the Bragg peaks. The intensity of the diffuse
scattering, as indicated by the shading (light for higher intensity, dark for low intensity) is the
same for all plots. The plot in the bottom-right corner shows experimental TEM measurements for
β-cristobalite [2].

It should be remarked that it has only been possible to draw this conclusion from the fact
that the data extend to a large value of Qmax. The distances between the sites in the six-site
model are closer than the resolution possible in a normal diffraction experiment, meaning that
traditional crystallographic analysis would not easily be able to distinguish between the six-site
model and the continuous annulus model.

In the β-phase there is only a small effect of temperature on the structure fluctuations, with
the disordered structures being similar for all temperatures. But on cooling through the phase
transition, there are changes to the atomic configurations, distribution functions, and structure
of the three-dimensional diffuse scattering. However, it is clear from the analysis that there
is still considerable structural disorder in the α-phase, even though the phase transition has a
large first-order discontinuity.

One interesting result from the RMC analysis is that there appears to be little correlation
between the length of an Si–O bond and the corresponding Si–O–Si angle. This correlation had
been predicted from quantum mechanical calculations on small silica clusters [36], and at face
value appears to hold for experimental structural data such as those for β-cristobalite, where
an apparent linear Si–O–Si angle is correlated with an apparently short Si–O bond. However,
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such experimental data are not appropriate because, as we see in the case of β-cristobalite,
Si–O bonds that appear to be too short are indicative of structural disorder with rotations of
longer Si–O bonds. The results of this study show that, at least as far as structural fluctuations
are concerned, there are no correlations between the Si–O bond length and the Si–O–Si angle.

We have remarked that the present results are in agreement with the predictions of the RUM
model. Moreover, they are also in agreement with recent molecular dynamics simulations
(MDS) of a simple model of β-cristobalite [11]. This simple model was designed to most
closely approximate the RUM ideas by simulating rigid SiO4 tetrahedra with linked vertices
joined by springs of zero equilibrium length. One of the main results from this model was
that the configurations produced by the MDS showed many similarities to the configurations
produced by the RMC. The MDS also showed that all RUMs are excited, giving a pattern of
diffuse scattering similar to that found in this study. Thus the RMC and MDS results are in
close agreement, and both present support for the RUM model of the phase transition and of
the nature of the structural disorder in the β-phase. The results for the orientations of the Si–O
bond are also in agreement with those from earlier MDS studies using realistic interatomic
potentials [8].

Acknowledgment

We are grateful to the EPSRC for support.

References

[1] Heaney P J 1994 Structure and chemistry of the low-pressure silica polymorphs Rev. Mineral. 29 1–40
[2] Hua G L, Welberry T R, Withers R L and Thompson J G 1988 An electron-diffraction and lattice-dynamical

study of the diffuse scattering in β-cristobalite, SiO2 J. Appl. Crystallogr. 21 458–65
[3] Welberry T R, Hua G L and Withers R L 1989 An optical transform and Monte Carlo study of the disorder in

β-cristobalite SiO2 J. Appl. Crystallogr. 22 87–95
[4] Withers R L, Thompson J G and Welberry T R 1989 The structure and microstructure of α-cristobalite and its

relationship to β-cristobalite Phys. Chem. Minerals 16 517–23
[5] Hatch D M and Ghose S 1991 The α–β phase transition in cristobalite, SiO2: symmetry analysis, domain

structure, and the dynamic nature of the β-phase Phys. Chem. Minerals 17 554–62
[6] Schmahl W W, Swainson I P, Dove M T and Graeme-Barber A 1992 Landau free energy and order parameter

behaviour of the α–β phase transition in cristobalite Z. Kristall. 201 125–45
[7] Swainson I P and Dove M T 1993 Low-frequency floppy modes in β-cristobalite Phys. Rev. Lett. 71 193–6
[8] Swainson I P and Dove M T 1995 Molecular dynamics simulation of α- and β-cristobalite J. Phys.: Condens.

Matter 7 1771–88
[9] Swainson I P and Dove M T 1995 On the thermal expansion of β-cristobalite Phys. Chem. Minerals 22 61–5

[10] Dove M T, Keen D A, Hannon A C and Swainson I P 1997 Direct measurement of the Si–O bond length and
orientational disorder in β-cristobalite Phys. Chem. Minerals 24 311–7

[11] Gambhir M, Dove M T and Heine V 1999 Rigid unit modes and dynamic disorder: SiO2 cristobalite and quartz
Phys. Chem. Minerals 26 484–95

[12] Wright A F and Leadbetter A J 1975 The structures of the β-cristobalite phases of SiO2 and AlPO4 Phil. Mag.
31 1391–401

[13] Giddy A P, Dove M T, Pawley G S and Heine V 1993 The determination of rigid unit modes as potential soft
modes for displacive phase transitions in framework crystal structures Acta Crystallogr. A 49 697–703

[14] Hammonds K D, Dove M T, Giddy A P, Heine V and Winkler B 1996 Rigid unit phonon modes and structural
phase transitions in framework silicates Am. Mineral. 81 1057–79

[15] Dove M T 1997 Theory of displacive phase transitions in minerals Am. Mineral. 82 213–44
[16] Dove M T, Heine V, Hammonds K D, Gambhir M and Pryde A K A 1998 Short-range disorder and long-range

order: implications of the ‘rigid unit mode’ model Local Structure From Diffraction ed M F Thorpe and
S Billinge (New York: Plenum) pp 253–72

[17] Hammonds K D, Dove M T, Giddy A P and Heine V 1994 CRUSH: a FORTRAN program for the analysis of
the rigid unit mode spectrum of a framework structure Am. Mineral. 79 1207–9



Disorder in cristobalite 423

[18] Wright A C 1993 Neutron and x-ray amorphography experimental techniques of glass science Ceramic Trans-
actions ed C J Simmons and O H El-Bayoumi (Websterville, VT: American Ceramic Society) pp 205–314

[19] Wright A C 1997 X-ray and neutron diffraction: experimental techniques and data analysis Amorphous Insulators
and Semiconductors ed M F Thorpe and M I Mitkova (Dordrecht: Kluwer) pp 83–131

[20] Keen D A and Dove M T 1999 Comparing the local structures of amorphous and crystalline polymorphs of
silica J. Phys.: Condens. Matter 11 9263–73

[21] Keen D A and Dove M T 2000 Total scattering studies of silica polymorphs: similarities in glass and disordered
crystalline local structure Mineral. Mag. 64 229–39

[22] McGreevy R L and Pusztai L 1988 Reverse Monte Carlo simulation: a new technique for the determination of
disordered structures Mol. Simul. 1 359–67

[23] McGreevy R L 1995 RMC—progress, problems and prospects Nucl. Instrum. Methods A 354 1–16
[24] Keen D A 1997 Refining disordered structural models using reverse Monte Carlo methods: application to

vitreous silica Phase Transitions 61 109–24
[25] Keen D A 1998 Reverse Monte Carlo refinement of disordered silica phases Local Structure From Diffraction

ed M F Thorpe and S J L Billinge (New York: Plenum) pp 101–19
[26] Tucker M G, Dove M T and Keen D A 2000 Simultaneous measurements of changes in long-range and short-

range structural order at the displacive phase transition in quartz J. Phys.: Condens. Matter 12 L723–30
[27] Tucker M G, Dove M T and Keen D A 2001 Application of the reverse Monte Carlo method to crystalline

materials. J. Appl. Crystallogr. submitted
[28] Howells W S and Hannon A C 1999 LAD, 1982–1998: the first ISIS diffractometer J. Phys.: Condens. Matter

11 9127–38
[29] Keen D A 2001 A comparison of various commonly used correlation functions for describing total scattering

J. Appl. Crystallogr. submitted
[30] Howe M A, McGreevy R L and Howells W S 1989 The analysis of liquid structure data from time-of-flight

neutron diffractometry J. Phys.: Condens. Matter 1 3433–51
[31] Brown P J and Matthewman J C 1987 Rutherford Appleton Laboratory Report RAL-87-010
[32] David W I F, Ibberson R M and Matthewman J C 1992 Rutherford Appleton Laboratory Report RAL-92-032
[33] Pawley G S 1981 Unit-cell refinement from powder diffraction scans J. Appl. Crystallogr. 14 357–61
[34] Tucker M G, Dove M T and Keen D A 2000 Direct measurement of the thermal expansion of the Si–O bond by

neutron total scattering J. Phys.: Condens. Matter 12 L425–30
[35] Pusztai L and McGreevy R L 1997 MCGR: an inverse method for deriving the pair correlation function from

the structure factor Physica B 234–236 357–8
[36] Lasaga A C and Gibbs G V 1991 Quantum-mechanical Hartree–Fock potential surfaces and calculations on

minerals 2. 6-31 G* results Phys. Chem. Minerals 17 485–91


